
The transcendence type for almost all points in m-dimensional real

space Rm

Let P be a polynom, P ∈ Z[x1, . . . , xm] . Let us denote deg P the total degree

of P , H(P ) the maximum module of the coefficients of P . If P 6≡ 0 we denote

t(P ) = deg P + ln H(P )

the type of P .

Theorem. For almost all points ξ ∈ Rm there exists such constant c = c(ξ) > 0

that the inequality

|P (ξ)| > e−ctm+1(P )

holds for any non-zero polynom P ∈ Z[x1, . . . , xm].

Prehistory

Let ξ be real number, transcendental over Q , and let τ > 0 .

Defin 1. We will say, that ξ has transcendence type 6 τ , if for any non-zero

polynom P (x) ∈ Z[x] inequality

|P (ξ)| > e−c1t(P )τ

holds, where c1 = c1(ξ) > 0 (c1 is independent of polynom P ).

This definition was given by S. Leng in 1966.

Defin 2. We will say that transcendence type of ξ equals τ , if ξ has transcendence

type 6 τ and there exists an infinite number of such polynoms P that inequality

|P (ξ)| 6 e−c2t(P )τ

holds, where c2 = c2(ξ) > 0 .

Assume that some real transcendental number ξ has transcendence type 6 τ .

Using Dirichlet box principle one can prove, that τ > 2 .

The problem of defining the transcendence type for concrete ξ is very complicated.

For example, π has transcendence type 6 2+ ε for any positive ε (this follows from
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the results, obtained by N.I. Feldman in 1951). But it is still unknown whether we

can state that the transcendence type of π equals 2 .

In 1971 K. Mahler supposed that almost all real numbers have transcendence

type 2 .

This assumption was proved by Y.V. Nesterenko in 1974.

It was also proven in that work, that almost all points ξ ∈ Rm have transcendence

type 6 m+2 and assumption that in fact almost all points ξ ∈ Rm have transcendence

type precisely m+1 was formulated (definitions 1 and 2 can be extended to multidimentional

case word for word).

Similar results can be obtained in p-adic case, when ξ = (ξ1, . . . , ξm) ∈ Qm
p ,

and p-adic norm and Haar measure on Qm
p are used instead of absolute value and

Lebesque measure.

In 1984 Y.V. Nesterenko proved that almost all points ξ ∈ Q2
p have transcendence

type 3 . This was the first precise estimate for the case with space-dimension greater

than 1 .

The problem in question can be stated not only for real and p-adic but for

complex numbers. In the early 80th of the last century G.V. Chudnovsky supposed,

that for almost all (in the sense of 2m-dimentional Lebesque measure) points ξ ∈ Cm

there exists such constant λ = λ(ξ) > 0 , that for any non-zero polynom P ∈

Z[x1, . . . , xm] inequality

|P (ξ)| > e−λt(P )m+1

holds.

This assumption was proved by F. Amoroso in 1990. I.e. it was determined,

that almost all points ξ ∈ Cm have transcendence type m+1 . Note that correctness

of the similar statement in real case is not a direct corollary of Amoroso’s result,

because the set with Cm 2m-dimensional Lebesque measure 0 can intersect with

subset Rm ⊂ Cm at the set of positive m-dimensional measure. The Amoroso’s proof

appreciably uses the ”complexity” of situation, and cannot be trivially adopted to

real or p-adic case. The proof of the real case obtained by reporter can be used with

small changes in p-adic and complex cases.
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The plan of the proof

We will call the point ξ ∈ Rm good, if the theorem’s condition holds for it, and

we will call ξ bad, if it’s not good. Let us denote Ω the set of all bad points Rm , and

Ω0 the set of bad points ξ ∈ Rm with condition |ξ| 6 1 , where |ξ| = max
16i6m

|ξi| .

The first step in proof of the theorem is that in fact we can examine only points

ξ ∈ Rm with condition |ξ| 6 1 , i.e. points of the unit ball. It is easy to prove,

that shift on the vector with integer coordinates moves good points to good, and bad

points to bad. That is why Ω is contained in the union of all possible shifts of the set

Ω0 on vectors with integer coordinates, and the number of these shifts is countable.

Let us introduce the auxiliary sets. We will denote with S0 the set of points in

the unit ball, which coordinates are algebraically dependent.

Let τ1, τ2 be positive real numbers, n be integer number. Denote with Bn(τ1, τ2)

the set of points ξ ∈ Rm, |ξ| 6 1 , and for each point such polynom Q ∈ Z[x1, . . . , xm]

that t(Q) 6 n,

|Q(ξ)| 6 e−τ1nm+1

, max
16i6m

∣∣∣∣∂Q

∂xi

(ξ)

∣∣∣∣ > e−τ2nm+1

exists. And let

S(τ1, τ2) =
∞⋂

N=1

⋃
n>N

Bn(τ1, τ2),

i.e. S(τ1, τ2) is the set of points, that are contained in the infinite number of sets

Bn .

Lemma 1 Let τ1, τ2 be positive real numbers with condition τ1 > τ2 + 1
m!

. Then

µ(S(τ1, τ2)) = 0.

Thus we have defined limitations for parameters τ1, τ2 with which the measure

of set S(τ1, τ2) equals zero. Next step is to prove inclusion

Ω0 ⊂ S(τ1, τ2) ∪ S0

for some parameters τ1, τ2 with condition

τ1 > τ2 +
1

m!
.
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Further we’ll need some algebraic notions. Let Q[X] be the ring of polynoms

of variables x0, . . . , xm over Q . Let I be some homogeneous ideal of the ring Q[X] .

Recall that ideal I of the ring of polynoms Q[X] = Q[x0, . . . , xm] is called unmixed,

if all its primary components have the same dimension, equal to dimension of ideal I .

Dimension dim I of homogeneous ideal I is considered as its projective dimension,

i.e. for prime homogeneous ideal p its dimension equals degtrQ(Q[X]/p)− 1 .

For homogeneous unmixed ideal I the notions of degree of ideal deg I , logarithmic

height of ideal h(I) , and absolute value of ideal in the point ξ
′ in projective complex

space Cm+1 , denoted as |I(ξ
′
)| can be defined. I’ll refer to the Yu.V. Nesterenko,

Algebraic independence for values of Ramanujan functions, ch. 3 in "Introduction to

algebraic independence theory", LNM N175Q2, eds. Yu.V. Nesterenko, P. Philippon,

Springer, Berlin, (2001) for details.

I’ll only say, that they remind the similar characteristics of the polynom regarding

their properties.

Similarly to the type of polynom, the notion type of ideal I can be denoted as

t(I) = deg I + h(I).

Let us define some set of points, using the characteristics of ideals. Let λ be

rather big real positive number, dependent of m .

Let Ar be the set of points ξ ∈ Rm, |ξ| 6 1 , ξ /∈ S0 , for which infinite sequence

of such different homogeneous unmixed ideals I ⊂ Q[x0, x1, . . . , xm] that dim I =

r − 1 and

ln |I(1, ξ1, . . . , ξm)| 6 −λ32r

(t(I))
m+1

m+1−r , 1 6 r 6 m

exists. Let A0 = ∅ . It can be proved that condition ξ /∈ S0 provides that the value

|I(1, ξ1, . . . , ξm)| is different from zero. Hence Ar is defined correctly.

Similarly Br is the set of points ξ ∈ Rm, |ξ| 6 1 , ξ /∈ S0 , for which infinite

sequence of such different homogeneous prime ideals p ⊂ Q[x0, x1, . . . , xm] that

dim p = r − 1 and

ln |p(1, ξ1, . . . , ξm)| 6 −λ32r−1

(t(p))
m+1

m+1−r , 1 6 r 6 m,
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exists.

Lemma 2 Inclusion

Ar ⊂ Br

holds for each r = 1, . . . ,m.

Lemma 3 Let p ⊂ Q[x0, x1, . . . , xm], m > 1 — prime homogeneous ideal, r =

dim p + 1 > 1. Let L = min
E∈p

t(E). Then there exists such homogeneous polynomial

F ∈ p ∩ Z[x0, . . . , xm] and index j, 0 6 j 6 m, that

∂F

∂xj

/∈ p, t(F ) 6 c2L,

where c2 = c2(m) — some effective constant.

Let

S = S(τ1, τ2), τ1 =
1

4
λ(4c2)

−m−1, τ2 = τ1 −
2

m!
,

where c2 is constant from lemma 3. Thenµ(S) = 0 according to lemma 1.

Lemma 4 Inclusion

Br ⊂ Ar−1 ∪ S

holds for each r = 1, . . . ,m

Lemma 5 Inclusion Ω0 ⊂ Am ∪ S0 holds.

The proof of the main theorem

It follows from lemmas 2 and 4 that

Am ⊂ Bm ⊂ Am−1 ∪ S ⊂ . . .

⊂ A1 ∪ S ⊂ B1 ∪ S ⊂ S.

Hence, µ(Am) = 0 . It follows from lemma 5 that Ω0 ⊂ Am ∪ S0 . Then, µ(Ω0) = 0 .
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