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Abstract

We present a general multiplicity estimate for
linear forms in solutions of various type of
functional equations, which covers and ex-
tends the zero estimates used in recent work
on the Siegel-Shidlovsky theorem and its g¢-
analogues. We also present a dual version of
this estimate, as well as a new interpretation
of Siegel’'s theorem itself in terms of periods
of Deligne's irregular Hodge theory.
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XXth century

n>0,[K:Q=xKCC;, Koy—1

— | : | =A%) : (*)
where A(z) € gln<K(z) N K[[z — 1]]).

E = (&,...,E), KE-functions, generating a
C(z)-vector space of dimension n(f).

E(1) = (&£1(1),...,&En(1)), “generating" a K-
vector space Wy of dimension r :=r1(&).

Theorem (Siegel-Shidlovsky) : r1(&€) > ”f).

Nesterenko-Shidlovsky (1996) : if K — Q,
then r,(£) = n(€) for a.a. v's € Q.



XXI th century

Y. André (2000) : new proof of S-Sh. The

fundamental lemmais: let f be a QE-function,
and let L € C(z)[d/dz] of minimal order such

that £L(f) = 0. If f(1) = 0, then, all so-

lutions of L vanish at z = 1. Then, as in

the Gel'fond-Debes method from the theory

of G-functions, construct an auxiliary K FE-

function with high multiplicity at z = 1, ra-

ther than at 0. Take the product of its conju-

gates to get a QFE-function (= %).

D.B. (2004) : new proof of S-Sh., based on
Laurent interpolation determinants. Requires
a new type of multiplicity (or vanishing) lemma,
more on this later. No auxiliary function, and
the roles of O and 1 are parallel. Cf. A. Sert
(1999) in the Lindemann-Weierstrass case.

F. Beukers (2006) : |r1 (&) =n(&E) !




In other words, S-Sh. is valid over Q. The
proof is based on André’'s lemma and on diffe-
rential Galois theory. The output is that An-
dré’s lemma is valid for K E-functions, hence
no loss of & in the final estimate.

Meanwhile, in the g-difference world :

Y1 Y1
(qz) = A(2) | ¢ | (2) (q)

Yn YUn
where A(z) € GLn<K(z)>.

Y := (y1,...,yn) analytic at 0 with n(Y) = n,
0 # s = (p1,---pn) € (C[z])", deg(s) < L,

s.Y = p1y1 + ... + pnyn, 55.Y (2) = (s.Y)(¢"2),
generating a C(z) v.-s. of dimension v. Then :

M. Amou, T. Mataha-Alo, K. Vaandanen (2003,
2006) : ordp(s.Y) <vL + c.

Applications in the style of Siegel-Shidlovsky :
see Keijo's talk on Wednesday.

D.B. (2006) : new type of multiplicity esti-
mates, involving 0 and ¢N-orbits. No applica-
tion yet.



What for?

Recall W1 = smallest K-v-s. through £(1) =
(E1(1),...,En(1)), of dimension r := r1(&), as-
sume n(€) = n, and let Z4,..., 2, be a basis
of solutions of (x) whose values at 1 lie in
W1. Fix parameters L,Tp,T7 € N, and consi-
der the linear map (with 9 =d/dz) :

¢ (Clzl<p)" — ClopC™i
dim =n(L+1)  dim=Ty+rTy
s = (p1, s pn) = (0'(5.£)(0)rcryys 0" (5.2p) ()cry)
represented by the (To+7rT1) xn(L+1) matrix
b =
[ ®g = (8t(3i-5)(0)) 0<t<To—1:1<i<L+1 \

®p = (0(54-2p) (1)) 0<t<ry—1;1<i<L+1
\ (p=1,..)]
where s;,¢ < (L+1)™ is a basis of (Clz]<1)".

If we knew that



then the proof would consist of two words :
just look!

[(®g = (375(%26&)(0)) 0<t<Tp—1:1<1<n,0<l<L \

eo e e

b, = (3t(%zezp,b)(1)) 0<t<Ty—1:1<1<n,0<t<L

\ (p=1,r) )
(and extract a n(L + 1)- (or Tg + rT1-)minor

determinant A € K*, whose height forces

ToTy < reLTy 4+ +r(k 4+ 1)TZ 4+ +0O(L?/LogL),
hence n < rk, it Iog = (n —¢€)L,T7 small.)

For Lindemann-Weiertsrass, one can also use :
[ ®g = (315(%(2‘ — 1)6&)(0)) 0<t<Tp—1:1<1<n,0<l<L )

®p = (0'(fi(z = 1)'2,,)(1)) 0<t<ry—1:1<0<n,0<e<L
\ (=1,..)

(and conclude that |TyT; < kToL + O(L?/LogL),

hence n < rk, if Ty = (3. — €)L,Tp small.)
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Generalized Shidlovsky lemmas

Write (M = C(2)", V) for (x), with set of
singularities S. Let R C C be a finite set,
and for all & € R, let W, be a C-susbspace
of Mo = (K[[z — a]])" formed by solutions
of V. A linear form s in M*(L) = (Clz]<p)"
vanishes to an order > T along W, if for all
Z € Wy, s.Z vanishes to an order > T.

Differential multiplicity lemma : 3¢(V), com-
putable in terms of M,V and card(R), such
that : let {To,a € R; L} € N, and 0 # s €
M*(L) vanishing to an order > T, along Wa,
for all o« € R. Then, there exists a subspace
M’ in Ker(s) C M stable under V, such that

> dim(Wao /WanN ML) . To, < rk(M/M').L+c(V).
a€ER

[And we may in fact take for M’ the maximal
V-stable subspace of Ker(s).]



R = {0,1}, dim(Wp) = 1, r = dim(WV1). Say
that Wy is non degenerate if for all M’ £= M
stable under V, we have :
’r_’ o dim (W1 /W1 ﬂM’l) S dim (V1) S
n' rk(M /M) — rk(M) n
(NB : n(€) = n & Wy non-degenerate.)

Corollary : let Ty, T7,L € N, let s €¢ M*(L)
vanishing to an order > Ty, along Wy, a =
0,1. Assume the W,'s are non-degenerate,
and that To+rT7 > nL+nc(V). Then, s = 0.
In other words, ¢ is injective.

(NB : could replace the non-degeneracy of
Wi by L > Ty.) Forgetting a = 1, this im-
plies Shidlovsky's original lemma that if the
order of s.£ at a«a = 0 is almost nL, then, the
linear forms s = s1,V*s = so, ..., s, are linearly
independent.



In the ¢-difference world

Let |¢| < 1. For a € C*, the positive (resp.
negative) orbit of « is {¢"a,n > 0} (resp.
n < 0).

f(z) in the Nielsen class (of quasiunipotent
type) means : a polynomial in a fractional
power of z and in Logz, whose coefficients are
meromorphic functions near 0. Given a € C*
and some determination of Logz such that f
is defined on the positive orbit of «, set :

ordl(f) = sup{t e N, f(a) = ... = (¢t ta) = 0}.

When f # 0, this is a finite number := the
order of f at « relatively to the g-difference
operator 6, : f — 64f, where 5 f(z) = £a2)=F(),

qQz—=z

If « = 0 and f is analytic at O, ordd(f) :=
ordg(f) is the order of f at O in the usual
sense, i.e. relatively to §,.(0) := %|o; indeed,
4 £(0) is the limit of 64(f)(a) when «a tends

to 0.
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Write M = (C(2))™, W), WY (2) = A(2)" 1Y (¢z2)
for (x¢), and assume that W is regular singular
at O, with quasi-unipotent local monodromy.
No assuption at oo (e.g. regular and confluent
g-hypergeometric equations). Then, the Niel-
sen type solutions of W form a C-vector space
MY of dimension n.

For a # 0,a ¢ Sing(A), let W, be a C-
subspace of MY and let s = (p1,...,pn) €
(C[z])™ be a linear form on M. For any Y =
(y1,...,yn)t € Wy, the Nielsen type function

s.Y (2) = p1(2)y1(2) + ... + pn(2)yn(2)

iIs defined on the positive orbit of «, and we
may speak of its g-order ordd(s.Y) at a. We
then set :

ord%va(s) = min(ordi(s.Y);Y € Wy).

This expression still makes sense if « = 0, as
long as the C-subspace Wy consists of solu-
tions all of whose coordinates are analytic at
O : then, ord%vo(s) is the order of s along Wy
in the previous (differential) sense.
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Let R = {a1,...,ar} be a finite set of com-
plex nbs, possibly including O but not meeting
the negative g-orbit of Sing(A), and whose
classes modulo qZ are distinct. For all o € 'R,
let W, ¢ MY be a C-subspace of solutions
of W (analytic at 0 if a = 0).

g-difference multiplicity lemma : Je(WV), de-
pending only on (M,WV) and card(R), such
that : let {To,a € R;L} € N, and 0 # s €
M*(L) vanishing to an order > T, along W,
for all o € R. Then, the maximal subspace
M'" C Ker(s) C M stable under VU satisfies :

> dim(Wa/WanM'). To < rk(M/M").L4c(W).
aER
Same corollaries as earlier, e.g. :

(Vdandanen’s “Shidlovsky lemma'") : the di-
mension v of the C(z)-subspace of M*(L).
generated by s = s1, W*s = 5o, ..., s, Satisfies :
ordg(s.Y) <vL + c.

= non-vanishing of the n-order determi-
nant = independence results.
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Also : assume R = {0, 1}, dimWg =1, dimW;
= r, ord%vo(s) > T, ord?/vl(s) > T, L > T4,
and Top + rT1 > nL + c¢(WV). Then s =0.

= non vanishing of the n(L + 1)-order de-
terminant =7

Proof of the multiplicity lemmas

As in Shidklovsky, the crucial point is that the
C(z)-subspaces of M (resp. M) stable un-
der V (resp. W) are definable by linear forms
with degrees bounded by a constant ~ de-
pending only on V (resp. V). However, while
Fuchs's relation (or methods from symbo-
lic algebra) provides effective estimates for
~(V) in terms of the coefficients of the ma-
trix A(z), the present status of v(W) seems
ineffective. The problem reduces to finding
a priori upper bounds for the degree of the
rational solutions of a linear g-difference ope-
rator Ly = y(g"2z)+a,—1y(g" 12)+...+aoy(z)
with coefficients in C(z), regular singular at
0.
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Vanishing lemmas

These are “interpolation lemmas", which im-
ply the surjectivity of ¢, and can therefore be
viewed as vanishing criteria for the H?Y of cer-
tain sheaves (hence their name). They should
be easier to prove than the multiplicity lem-
mas, but for the moment, the deduction goes
the reverse way, following a method of D.
Masser and S. Fischler. Here is an example in
the differential case (a similar criterion holds
in the ¢-difference case.).

On top of the previous assumption that the
line Wy and the subspace W; are non-degene-
rate, we suppose that £(0) %= 0, and that 1
IS not a singularity of V

Differential vanishing lemma : 3¢(V) com-
putable in terms of (M,V) such that : let
{a’o,tao <t < TO - 1aa'p,t71 < p < r,0 <t <
Ty —1} be a (To+r171)-uple of complex num-
bers. Let further Ty, Tv,L € N satisfy nL >
To + rT1 + ¢(V). Then, there exists a linear
form s € M*(L) such that 9'(s.£)(0) = ag;
for all t < Top—1 and 9'(s.Z,)(1) = a, for all
p=1....rt<T7—1.
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Deligne’s periods

Irregular singularities provide theorems : Siegel-
Shidlovsky's !

Regular singularities provide conjectures : Gro-
thendieck’s on periods.

Deligne's “irregular periods" : in the case of

2
e <, set

2

H}p = {e " Qlldz}/d({(e* Ql2]}) ~ Qe % d2

HP = Z.y,y = the real line R.

Period : fjrogo e~ dy = vm (not a period in
the motivic sense).

Irregular periods in a family : consider ez+/\/z,
A € K (a 'Legendre" parameter)

Hlo = {P(z,271)e*TA?9/ exact forms }
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~ Kwd Kn,w= €Z+>‘/Z%, n = e*tAzq,

HP = Zyy ® Zyz,v1 = {|2| = 1},72 = R (if
AeRT).

H},is a C(A\)-vector space with a connexion,
whose dual admits ;1 and ~o as horizontal
vectors (see also Bloch-Esnault). Therefore,
the family of periods

d
w1(A) =/ w = e tA/zE2
Y1 |z|=1 z
N
= QiWano(nl)Q = 2’L7TJO()\)

is a solution of a 2nd order differential equa-
tion (Bessel!) , whose derivative Jy()\) is es-
sentially given by ni(\) = J;m- The second
period

0 d
wo () =/ W =/ R it
2 —o0

z

(essentially Ygp(A)) has a logarithmic singula-
rity at A = 0.

16



Now, Siegel's theorem on the algebraic inde-
pendence of Jg(X) and J(\) implies : for any
A€ Q, )\ # 0, the periods w1()\) and wo(\) are
linearly independent over Q. In particular, the
slope 7()\) = 5283 never vanishes.

Questions :

i) what can be said of the “quasi-periods"
n;(N\), which involve E- and G-functions? (NB :
there is a Legendre relation, since the wrons-
kian of the Bessel equation is rational).

ii) what is the analogue of Grothendie-
ck’s conjecture for these irregular periods?

Many other irregular periods can be studied,
using Shidlovsky’'s theorem on hypergeome-
tric equations. In a sense, we have a theorem
waiting for a ... conjecture!
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