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Irrationality measures

When a real number ξ is proved to be irrational thanks to Diophantine approximation,
the proof usually provides an infinite sequence of rationals (pn/qn)n≥1 converging fast
enough to ξ, say

0 < |qnξ − pn| < εn,

for a vanishing sequence of real numbers (εn)n≥1.

When it is possible to control the growth of qn and of εn, this also provides an
irrationality measure for ξ, in the sense it is possible to find a function f taking
positive values and such that |ξ − p/q| > f (q), for every rational number p/q.

This just relies on a classical trick with triangular inequalities.

Moreover, in the case where the following condition are satisfied:

(i) εn < q−ε
n ,

(ii) lim supn→∞ log qn+1/ log qn < +∞,

it is possible to bound µ(ξ), the irrationality exponent of ξ.

Recall that:

µ(ξ) := sup
˘
ρ > 0, such that |ξ − p/q| < q−ρ has infinitely many solutions

¯
.

This way, it is for instance possible to bound from above µ(ζ(2)) and µ(ζ(3)).
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Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers.
For any integer n ≥ 1, let wn(ξ) denote the supremum of the exponents w for which

0 < |P(ξ)| < H(P)−w

has infinitely many solutions in integer polynomials P(X ) of degree at most n.
Set

w(ξ) := lim sup
n→∞

(wn(ξ)/n).

Then, ξ is an

• A-number, if w(ξ) = 0;

• S-number, if 0 < w(ξ) < ∞;

• T -number, if w(ξ) = ∞ and wn(ξ) < ∞ for every integer n ≥ 1;

• U-number, if w(ξ) = ∞ and wn(ξ) = ∞ for some integer n ≥ 1.

We recall some classical facts about Mahler’s classification:

• Two numbers that belong to two different classes are algebraically independent;

• Almost all real numbers are S-numbers;

• Algebraic numbers correspond to A-numbers;

• Liouville’s numbers correspond to U-numbers of degree one (the degree of a
U-number is the smallest integer n for which wn is infinite);

• π is either a S-number or a T -number (Mahler).
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Motivation

This lecture is motivated by the following question asked by Waldschmidt during a
seminar talk of Bugeaud at “Groupe d’Étude sur les Problèmes Diophantiens”
(November 2004, Jussieu, Paris).

Question (Waldschmidt). When a real number ξ is proved to be transcendantal
thanks to the Thue–Siegel–Roth–Schmidt method, is it true that one can always
derive from the proof a transcendance measure (possibly bad) for ξ?

The aim of this talk is to explain that the answer is “essentially yes”.
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The case of Roth’s theorem

A fundamental result produced by the Thue–Siegel–Roth–Schmidt method is of course
Roth’s theorem.

Theorem (Roth, 1955). Let ξ be a real number and δ > 0. Let us assume that there
exists an infinite sequence of distinct rational numbers (pn/qn)n≥1 such that

|ξ − pn/qn| < q−2−δ
n ,

for every n ≥ 1. Then, ξ is transcendental.

A. Baker, On Mahler’s classification of transcendental numbers, Acta Math. 111
(1964) 97–120.

Theorem (Baker, 1964). Under the assumption of Roth’s theorem, if moreover

lim sup
n→∞

log qn+1

log qn
< +∞,

then wd (ξ) < eecd2

for a constant c independent of d . In particular, ξ is either a
S-number or a T -number.

The proof is rather technical (sixteen pages including seven preliminary lemmas).
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Quantitative statements and a short proof of Baker’s theorem

It is well-known that we can bound the number of solutions of Roth’s inequality.

Theorem (Evertse, 1995). Let α be an algebraic number of degree d and δ > 0.
Then, the inequality

|ξ − p/q| < q−2−δ ,

has at most cδ log d log log d solutions with q > H(α), where cδ only depends on δ.

New idea. Let ξ be a real number such that

|ξ − pn/qn| < q−2−δ
n and lim sup

n→∞
(log qn+1/ log qn) < +∞.

Let α is an algebraic number of degree d ≥ 2 such that qn0 < H(α) ≤ qn0+1 and

|ξ − α| < H(α)−χ,

for a real number χ. Then,

|α− pn0+k/qn0+k | ≤ |ξ − pn0+k/qn0+k |+ |ξ − α| ≤ q−2−δ
n0+k + H(α)−χ < 2q−2−δ

n0+k

assuming that H(α)−χ < q−χ
n0

< q−2−δ
n0+k . Now, if χ is large enough, this works for

many integers k since qn grows at most exponentially. Hence, we get an upper bound
for χ and thus for wd (ξ).
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Quantitative statements and a short proof of Baker’s theorem

By this way, we can improve Baker’s result as follows.

Theorem (A. & Bugeaud, 2006). Under the assumption of Baker’s theorem, we have

wd (ξ) < c1d
c2 log log d

for some constants c1 and c2 both independent of d .

It is interesting to note that if we replace the bound of Evertse by the one of
Davenport and Roth in

H. Davenport & K. F. Roth, Rational approximation to algebraic numbers,
Mathematika 2 (1955) 160–167.

we exactly obtain Baker’s theorem.

The main interest of this new approach is that we can use it in more general
situtations.
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Quantitative statements and Schmidt Subspace Theorem

We first recall the simplest version of the Schmidt Subspace Theorem.

Theorem (W. M. Schmidt). Let m ≥ 2 be an integer and δ > 0. Let L1, . . . , Lm be
linearly independent linear forms in x = (x1, . . . , xm) with algebraic coefficients. Then,
the set of solutions x = (x1, . . . , xm) ∈ Zm to the inequality

|L1(x) . . . Lm(x)| ≤ (max{|x1|, . . . , |xm|})−δ

lies in finitely many proper subspaces of Qm.

Quantitative statements by Evertse, 1996. Let d be the degree of the number field
generated by the coefficients of all linear forms, then the number of exceptional
subspaces is bounded by

cm,δ log d log log d ,

where the constant cm,δ only depends on m and δ.

There exist extensions of this result to number fields and to p-adic valuations (see
Evertse & Sclickewei, 2002).
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A proof of transcendence via the Subspace Theorem

How a proof of transcendence via the Subspace Theorem looks like? To prove that a
real number ξ is transcendental, you first need linear forms with coefficients in the
field Q(ξ) and infinitely many integer points (xn)n≥1 such that

|L1(x) . . . Lm(xn)| ≤ H(xn)
−δ .

You assume now that ξ is algebraic, so that Q(ξ) = Q, and you argue by contradiction.

Since ξ is algebraic, you can apply the Subspace Theorem and thanks to the
pigeonhole principle you know that infinitely many of the points xn lie in a same
subspace.

Then:

(i) either it gives you a contradiction (take for instance a suitable limit and find that
ξ lies in a very special subset of Q such as a given number field);

(ii) either it gives you new small linear forms with a smaller number of variables and
you apply inductively the Subspace Theorem until you reach the situation (i).
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How to get a transcendence measure in such a case?

You assume that lim supn→∞ log H(xn+1)/ log H(xn) < +∞.

Then, you consider an algebraic number α of degree d (large enough so that α does
not lie in the vey special subset of Q) such that, for a too large number χ,

|ξ − α| < H(α)−χ.

You replace each linear form Li with coefficients in Q(ξ) by a linear form L′i obtained
by replacing every occurrence of ξ by α.

Then
|L′1(xn) . . . L′m(xn)| ≤ H(xn)

−δ

for a finite but large number M1 of points xn (because α is very close to ξ).

Since the new linear forms have algebraic coefficients, you can apply the quantitative
Subspace Theorem. By the pigeonhole principle, many points, say
M2 � M1/(log d log log d), lie in a same hyperplan.

Thanks to linear algebra, many points, say M3 � M2, lie in a same hyperplan with a
rather small height.

On the other hand, there is a small trick to ensure that a point xn in this hyperplan
has a very large height.

This provides a contradiction (which corresponds to case (i)), otherwise you can argue
inductively (as in (ii)). Instead of taking a limit (you have only a finite number of
points!), you use an effective result, that is, a Liouville type inequality.

Hence, χ cannot be too large and that’s it.
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Example: approximation by algebraic numbers of bounded degree

Theorem (W. M. Schmidt). Let ξ be a real number and δ > 0. Let us assume that
there exists an infinite sequence of distinct algebraic numbers (αn)n≥1 of degree at
most r and such that

|ξ − αn| < H(αn)
−r−1−δ ,

for every n ≥ 1. Then, ξ is transcendental.

Note that, contrary to the case of rational approximation, this is a difficult open
problem to bound the number of solutions of inequality

|α− αn| < H(αn)
−r−1−δ ,

when α is an algebraic number.

However, we can still generalize Baker’s theorem as follows.

Theorem (A. & Bugeaud, 2006). We conserve the assumption of Schmidt’s theorem
and we assume that

lim sup
n→∞

log H(αn+1)/ log H(αn) < +∞.

Then,

wd (ξ) < c1d
c2(log d)r−1(log log d)r

for some constants c1 and c2 both independent of d . In particular, ξ is either a
S-number or a T -number.
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problem to bound the number of solutions of inequality

|α− αn| < H(αn)
−r−1−δ ,

when α is an algebraic number.

However, we can still generalize Baker’s theorem as follows.

Theorem (A. & Bugeaud, 2006). We conserve the assumption of Schmidt’s theorem
and we assume that

lim sup
n→∞

log H(αn+1)/ log H(αn) < +∞.

Then,

wd (ξ) < c1d
c2(log d)r−1(log log d)r
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Infinite words and complexity

The complexity function of a sequence a = (an)n≥1 taking its values in a finite set A
is the function n 7→ p(n, a) defined by:

p(n, a) = Card{(aj , aj+1, . . . , aj+n−1), j ≥ 1}.

Clearly, the function p is non-decreasing and

1 ≤ p(n, a) ≤ (CardA)n, n ≥ 1.

It is extensively studied in combinatorics on words and symbolic dynamics.

In particular, the entropy of a sequence (which is nothing else than the topological
entropy of the underlying dynamical system) is defined as:

h(a) = lim
n→∞

1

n
log p(n, a).

Theorem (Morse & Hedlund, 1940). If a sequence is eventually periodic, then p(n, a)
is bounded, otherwise p(n, a) is increasing and thus

p(n, a) ≥ n + 1.

Moreover, there exist sequences with p(n) = n + 1 for every n ≥ 1. These are
Sturmian sequences.
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Real numbers, normality and complexity

A real number is normal in base b if all the bn blocks of digits of length n occurr in its
b-ary expansion with the right proportion, that is, with frequency 1/bn.

Borel’s “conjecture”, 1950. Every algebraic irrational number is a normal number.

We define the complexity of a real number ξ ∈ (0, 1) with respect to the base b by:

p(n, ξ, b) = p(n, a),

where a = (an)n≥1 denotes the b-ary expansion of ξ, that is ξ =
P

n≥1 an/bn·

If a real number ξ is normal in base b, then its complexity is maximal, that is,

p(n, ξ, b) = bn, ∀n ≥ 1.

Using a p-adic version of the Schmidt Subspace Theorem with three linear forms, we
proved:

Theorem (A. & Bugeaud, 2004). Let b ≥ 2 be an integer and α be an algebraic
irrational number. Then,

lim
n→∞

p(n, α, b)/n = +∞.

B. Adamczewski & Y. Bugeaud, On the complexity of algebraic numbers I.
Expansions in integer bases, Annals of Math. 165 (2007), in press.
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Real numbers with sublinear complexity

We say that ξ is a real number with sublinear complexity (with respect to the base b),
if

p(n, ξ, b) < cn,

for some constant c.

Among these numbers, we find many classical and interesting ones:

• Rational numbers.
• Lacunary numbers:

P
n≥1 1/bun with lim inf un+1/un > 1. For instance, the

Liouville number X
n≥1

1

10n!

is a lacunary number.
• Automatic numbers: these are the numbers whose b-ary expansion can be

generated by a finite automaton. Example: the Thue-Morse-Mahler numberX
n≥1

an

bn
,

where an = 1 if the sum of the binary digits of n is even and an = 0 otherwise.
• Sturmian numbers: these are numbers of the form

sθ,x :=
X
n≥1

1

bbnθ+xc ,

where θ > 1 is irrational and x ∈ [0, 1).
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Transcendence measures for real numbers with sublinear complexity

Using the method described in the first part of this talk, we are able to prove the
following result.

Theorem (A. & Bugeaud, 2006). Let ξ be a real number with sublinear complexity.
Then, one of the following situations holds:

(i) ξ is either a S-number or a T -number;

(ii) ξ is a rational number;

(iii) ξ is a Liouville number.

This theorem is not empty!

Indeed, the set of real numbers with sublinear complexity countains:

• all the rational numbers,

• some Liouville numbers (for instance,
P

n≥1 1/10n!)

• some S-numbers (for instance,
P

n≥1 1/22n
),

so that it is difficult to improve the theorem above. Only T -numbers could possibly be
removed from assertion (i).

Question. Is it possible to find a way to make a distinction between cases (i), (ii) and
(iii)?
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Repetitions in words

Given an integer k ≥ 1 and a finite word V , we write V k for the word VV . . . V
(k times repeated concatenation of V ).

Example. The pattern 012012012 = (012)3 is called a repetition of order 3 or simply a
cube.

More generally, we can consider real repetitions.

For any positive real number w , we denote by V w the word V bwcV ′, where V ′ is the
prefix of V of length d(w − bwc)|V |e. Here, dye denotes the smallest integer greater
than, or equal to y .

Example. The pattern 0120120 = (012)2+1/3 is called a repetition of order 2 + 1/3.



Repetitions in words

Given an integer k ≥ 1 and a finite word V , we write V k for the word VV . . . V
(k times repeated concatenation of V ).

Example. The pattern 012012012 = (012)3 is called a repetition of order 3 or simply a
cube.

More generally, we can consider real repetitions.

For any positive real number w , we denote by V w the word V bwcV ′, where V ′ is the
prefix of V of length d(w − bwc)|V |e. Here, dye denotes the smallest integer greater
than, or equal to y .

Example. The pattern 0120120 = (012)2+1/3 is called a repetition of order 2 + 1/3.



Repetitions in words

Given an integer k ≥ 1 and a finite word V , we write V k for the word VV . . . V
(k times repeated concatenation of V ).

Example. The pattern 012012012 = (012)3 is called a repetition of order 3 or simply a
cube.

More generally, we can consider real repetitions.

For any positive real number w , we denote by V w the word V bwcV ′, where V ′ is the
prefix of V of length d(w − bwc)|V |e. Here, dye denotes the smallest integer greater
than, or equal to y .

Example. The pattern 0120120 = (012)2+1/3 is called a repetition of order 2 + 1/3.



Repetitions in words

Given an integer k ≥ 1 and a finite word V , we write V k for the word VV . . . V
(k times repeated concatenation of V ).

Example. The pattern 012012012 = (012)3 is called a repetition of order 3 or simply a
cube.

More generally, we can consider real repetitions.

For any positive real number w , we denote by V w the word V bwcV ′, where V ′ is the
prefix of V of length d(w − bwc)|V |e. Here, dye denotes the smallest integer greater
than, or equal to y .

Example. The pattern 0120120 = (012)2+1/3 is called a repetition of order 2 + 1/3.



Repetitions in words

Given an integer k ≥ 1 and a finite word V , we write V k for the word VV . . . V
(k times repeated concatenation of V ).

Example. The pattern 012012012 = (012)3 is called a repetition of order 3 or simply a
cube.

More generally, we can consider real repetitions.

For any positive real number w , we denote by V w the word V bwcV ′, where V ′ is the
prefix of V of length d(w − bwc)|V |e. Here, dye denotes the smallest integer greater
than, or equal to y .

Example. The pattern 0120120 = (012)2+1/3 is called a repetition of order 2 + 1/3.



Repetitions in words

Given an integer k ≥ 1 and a finite word V , we write V k for the word VV . . . V
(k times repeated concatenation of V ).

Example. The pattern 012012012 = (012)3 is called a repetition of order 3 or simply a
cube.

More generally, we can consider real repetitions.

For any positive real number w , we denote by V w the word V bwcV ′, where V ′ is the
prefix of V of length d(w − bwc)|V |e. Here, dye denotes the smallest integer greater
than, or equal to y .

Example. The pattern 0120120 = (012)2+1/3 is called a repetition of order 2 + 1/3.



The diophantine exponent of an infinte word

We say that an infinite word a = a1a2 . . . satisfies the condition (∗)ρ if there exists
two sequences of finite words (Un)n≥1 and (Vn)n≥1, and a sequence of positive real
numbers (wn)n≥1 such that:

(i) UnV
wn
n is a prefix of a;

(ii) |UnV
wn
n |/|UnVn| ≥ ρ;

(iii) the sequence (|V wn
n |)n≥1 is increasing.

The Diophantine exponent of a, denoted by dio(a), is defined as the supremum of the
real numbers ρ such that a satisfies the condition (∗)ρ.

Thus,
1 ≤ dio(a) ≤ +∞.

It is easy to show that if a is eventually periodic then dio(a) = +∞.

This Dophantine exponent is a measure of the periodicity of a sequence. It is first
introduced in

B. Adamczewski & Y. Bugeaud, Dynamics for β-shifts and Diophantine
approximation, Ergod. Th. & Dynam. Sys., to appear.

although it already appears under the lines in

B. Adamczewski & J. Cassaigne, On Diophantine properties of real numbers
generated by finite automata, Compositio Math. 142 (2006), 1351–1372.
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Repetitions and Diophantine approximation

If the b-ary expansion of a real number ξ begins with the repetitive pattern

0.UV w

Then, ξ is close to the rational number

p

q
:= 0.UV := 0.UVVVV . . . V . . .

More precisely, ˛̨̨̨
ξ −

p

q

˛̨̨̨
<

1

b|UV w |

while
q ≤ b|U|(b|V | − 1) < b|UV |.

Thus, ˛̨̨̨
ξ −

p

q

˛̨̨̨
<

1

q|UV w |/|UV | .
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Diophantine exponent and Liouville numbers

If ξ is an irrational number, we thus have

µ(ξ) ≥ dio(ξ, b),

where dio(ξ, b) denotes the diophantine exponent of the b-ary expansion of ξ.

Using the method introduced in

B. Adamczewski & J. Cassaigne, On Diophantine properties of real numbers
generated by finite automata, Compositio Math. 142 (2006), 1351–1372.

we prove:

Theorem (A. & Bugeaud, 2006). Let ξ be an irrational number and b ≥ 2 be an
integer. Let us assume that there exists a positive number c such that

p(n, ξ, b) < cn, ∀n ≥ 1.

Then,
max{2, dio(ξ, b)} ≤ µ(ξ) ≤ (2c + 1)3(dio(ξ, b) + 1).

Corollary. Let ξ be an irrational number with sublinear complexity with respect to the
base b, then ξ is a Liouville number if and only if dio(ξ, b) = +∞.
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Applications I: lacunary and automatic numbers

• Lacunary numbers. Let ξ =
P

n≥1 1/bun be a lacunary number (that is,

lim infn→∞
un+1
un

> 1). In that case, the Diophantine exponent can be finite or

infinite. We easily get that ξ is a Liouville number if

lim sup
n→∞

un+1

un
= +∞

and ξ is either a S-number or a T -number otherwise.

• Automatic numbers. Here, the Diophantine exponent is always finite as obtained
in the proof of the following result:

Theorem (A. & Cassaigne, 2006). A liouville number cannot be generated by a
finite automaton.

The latter result confirms a conjecture of Shallit, and consequently:

Theorem (A. & Bugeaud, 2006). Irrational automatic real numbers are either
S-numbers or T -numbers.

This is a first step towards a more general conjecture suggested by P.G. Becker.

Conjecture. Irrational automatic numbers are all S-numbers.
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Applications II: Sturmian numbers

Sturmian numbers. For Sturmian numbers sθ,x :=
P

n≥1 1/bbnθ+xc, the Diophantine
exponent can be finite or infinite.

Proposition. Let sθ,x be a Sturmian number. Then, dio(sθ,x) < +∞ if and only if θ
has bounded partial quotients in its continued fractions expansion.

Theorem (A. & bugeaud, 2006). Let sθ,x be a Sturmian number. Then:

• sθ,x is a Liouville number if θ has bounded partial quotients;

• sθ,x is either a S-number or a T -number if θ has unbounded partial quotients.

The case x = 0 is due to

P. Bunschuh, Über eine Klasse reeller transzendenter Zahlen mit explizit
angebbarer g-adischer und Kettenbruch-Entwicklung, J. Reine Angew. Math. 318
(1980), 110–119.

Corollary. The two numbersX
n≥1

1

bbn
√

2+ζ(7)c
and

X
n≥1

1

bbne+πc

are algebraically independent.
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P. Bunschuh, Über eine Klasse reeller transzendenter Zahlen mit explizit
angebbarer g-adischer und Kettenbruch-Entwicklung, J. Reine Angew. Math. 318
(1980), 110–119.

Corollary. The two numbersX
n≥1

1

bbn
√

2+ζ(7)c
and

X
n≥1

1

bbne+πc

are algebraically independent.



Applications II: Sturmian numbers

Sturmian numbers. For Sturmian numbers sθ,x :=
P

n≥1 1/bbnθ+xc, the Diophantine
exponent can be finite or infinite.

Proposition. Let sθ,x be a Sturmian number. Then, dio(sθ,x) < +∞ if and only if θ
has bounded partial quotients in its continued fractions expansion.

Theorem (A. & bugeaud, 2006). Let sθ,x be a Sturmian number. Then:

• sθ,x is a Liouville number if θ has bounded partial quotients;

• sθ,x is either a S-number or a T -number if θ has unbounded partial quotients.

The case x = 0 is due to
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Applications II: Sturmian numbers

In the case where x = 0, we even have the following nice formula:

µ(sθ) = dio(sθ, b)

= 1 + lim sup
n→∞

[an, an−1, . . . , a1],

where θ = [a0, a1, a2, . . .].

It is even possible to compute the continued fraction expansion of sθ. For example:

X
n≥1

1

2bn(1+
√

5)/2c
=

1

20 +
1

21 +
1

21 +
1

22 +
1

23 +
1

25 +
1

. . . +
1

2Fn +
1

. . .

See for instance

J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math.
Soc. 63 (1977), 29–32.



Applications II: Sturmian numbers

In the case where x = 0, we even have the following nice formula:

µ(sθ) = dio(sθ, b) = 1 + lim sup
n→∞

[an, an−1, . . . , a1],

where θ = [a0, a1, a2, . . .].

It is even possible to compute the continued fraction expansion of sθ. For example:

X
n≥1

1

2bn(1+
√

5)/2c
=

1

20 +
1

21 +
1

21 +
1

22 +
1

23 +
1

25 +
1

. . . +
1

2Fn +
1

. . .

See for instance

J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math.
Soc. 63 (1977), 29–32.



Applications II: Sturmian numbers

In the case where x = 0, we even have the following nice formula:

µ(sθ) = dio(sθ, b) = 1 + lim sup
n→∞

[an, an−1, . . . , a1],

where θ = [a0, a1, a2, . . .].

It is even possible to compute the continued fraction expansion of sθ.

For example:

X
n≥1

1

2bn(1+
√

5)/2c
=

1

20 +
1

21 +
1

21 +
1

22 +
1

23 +
1

25 +
1

. . . +
1

2Fn +
1

. . .

See for instance

J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math.
Soc. 63 (1977), 29–32.



Applications II: Sturmian numbers

In the case where x = 0, we even have the following nice formula:

µ(sθ) = dio(sθ, b) = 1 + lim sup
n→∞

[an, an−1, . . . , a1],

where θ = [a0, a1, a2, . . .].

It is even possible to compute the continued fraction expansion of sθ. For example:

X
n≥1

1

2bn(1+
√

5)/2c
=

1

20 +
1

21 +
1

21 +
1

22 +
1

23 +
1

25 +
1

. . . +
1

2Fn +
1

. . .

See for instance

J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math.
Soc. 63 (1977), 29–32.



Applications II: Sturmian numbers

In the case where x = 0, we even have the following nice formula:

µ(sθ) = dio(sθ, b) = 1 + lim sup
n→∞

[an, an−1, . . . , a1],

where θ = [a0, a1, a2, . . .].

It is even possible to compute the continued fraction expansion of sθ. For example:

X
n≥1

1

2bn(1+
√

5)/2c
=

1

20 +
1

21 +
1

21 +
1

22 +
1

23 +
1

25 +
1

. . . +
1

2Fn +
1

. . .

See for instance

J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math.
Soc. 63 (1977), 29–32.


